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We here consider the fundamental interactions which drive barrier evolution in atom transfer reactions. By
applying the functional behavior predicted by second-order nondegenerate perturbation theory to a symmetric
linear curve crossing model, we are able to derive a simple formula for two-state mixing in the near-field. It
becomes readily apparent that the system property most critically responsible for governing the magnitude of
coupling is the diabatic state-to-state overlap. In order to explore this parameter in depth, we outline a basic
strategy for diabatic state construction in the near-field and use the imposed symmetry requirements and
phase relations to derive a functional form which relates the state-to-state overlap to molecular orbital properties
of the isolated reactants and the interatomic overlap matrix. Finally, we show how trends in barrier heights
may be analyzed in the context of combined far-field and near-field effects and how these effects may be
separated in order to provide insight into the underlying physics and broadly applicable mechanistic information.

Introduction

The potential energy surface is the landscape upon which all
chemical interactions occur, yet much of our conception of the
forces which shape these surfaces is caught up in the numerical
complexity of the many electron quantum mechanical system.
Even the basic atom transfer, one of the simplest bimolecular
reactions, is not wholly understood. While it is well-known that
these reactions are governed by the barrier to abstraction, there
remain a multitude of unanswered questions concerning the
fundamental physics that produce those barriers. Rates for simple
atom transfer reactions span many orders of magnitude, indicat-
ing a substantial variation in barrier height from system to
system. Such variance in reactivity is attributable to myriad
causes, indistinguishable based on information about the barrier
heights alone. In order to comprehend the physical principles
which govern these important reactions, it is necessary to
develop a model that can explain the observed reactive trends
in terms of relevant, measurable properties of a chemical system.

The advent of computational quantum chemistry has provided
today’s physical chemist with a heretofore unattainable capacity
for calculating the energy surfaces of complex systems. As
computer technology soars in speed and plummets in price, the
computational power of electronic structure calculations will
doubtlessly become both more accurate and more widely
utilized. However, there is also substantial scientific value to a
simpler approach. Basic analytical models, while significantly
less accurate, have the distinct advantage of demonstrating
explicitly how a multitude of independent variables combine
to yield the ultimate solution. Not only does such a model result
in a stronger understanding of the underlying physics, but it
also allows for the tailoring of experiments with the specific
aim of either supporting or refuting its predictions.

Thus, on the opposite end of the complexity spectrum from
the intensive computational techniques lies our approach to

fundamental reactivity theory. The aim is not to attain numerical
accuracy on barrier height prediction for a single chemical
system but rather to explain trends in terms of causality,
identifying the systemic properties whichcreatethose trends.
To this end, we seek to develop a general model for chemical
reactivity that permits us to isolate the distinct parameters which
shape the potential energy surface and to evaluate the relative
importance of each, thereby lending insight into the physical
mechanisms involved.

Fundamentals of the Model

Development of this model was motivated by the desire to
calculate barrier heights with an emphasis on facility and a focus
on reproducing chemical trends rather than predictive accuracy.
Its purpose is to isolate individual aspects of a system in order
to assess their relative significance in barrier height control. As
such we concentrate on the impact of first-order effects,
neglecting higher order terms which have only a minor
comparative influence on the shape of the potential energy
surface.

In this work, we shall focus specifically on atom transfer, a
basic but highly prevalent family of reactions. It has long been
understood1 that the barriers of such reactions arise from diabatic
state mixing, but while the problem has been studied exten-
sively,2-14 analytical solutions in terms of measurable system
properties have been a rarity. Shaik et al.9 have derived a
solution which demonstrates that the coupling of two states is
dependent upon the state-to-state overlap and elements of the
interatomic overlap matrix. The derivation we shall present
agrees with that variable dependence, but considers the problem
for a completely general interaction potential.

In order to bridge the conceptual gap between empirical
reactivity trends and the physical phenomena which drive them,
we have sought to develop an approach to thinking about two-
state crossing reactions with the ultimate goal of elucidation
via simplification, emphasizing the isolation of the controlling
physics rather than a numerically precise predictive capacity.
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Beginning with the approximation that the diabatic states evolve
linearly over the atom transfer region, we shall derive a simple
method for estimating the two state mixing and thereby identify
the systemic parameters which contribute to barrier height
formation.

The first important assumption of the linear curve crossing
problem is that the adiabatic barrier height may be represented
as a fraction of the crossing height, thereby separating the
absolute energy scale from the coupling. Mathematically, this
is expressed as

whereEx is the diabatic crossing height andâ is a parameter
arising from near-field state mixing. The former quantity is
easily calculable using a linear crossing model and depends on
far-field properties of the system, in particular the nature of the
dominating excited state at the boundary.15 Accurate calculation
of the latter quantity,â, is significantly more difficult and the
goal of this paper is the substantial simplification thereof.

In the following sections we shall briefly address the
fundamental approach to calculatingEx and present our deriva-
tion of â. For the sake of clarity, only the symmetric curve-
crossing case will be presented here; the asymmetric solution
shall be presented in the future.

Linear Crossing Approximation. In order to quickly
simplify the barrier calculation we shall treat the electron-transfer
process as an elementary two state linear curve crossing.

The reaction is divided into three stages as described by
Donahue et al.15 and depicted for an elementary, symmetric atom
abstraction in Figure 1. Stage I represents pure reactants;ψ1 is
the lower surface, corresponding to the occupied frontier
molecular orbital of the reactants whileψ2, which maps onto
the product ground state, represents the excited state. Naturally,
in Stage III the roles of the wave functions are reversed, with
ψ2 corresponding to the ground state andψ1 the excited state.
In general, we model Stages I and III as undistorted approach
and withdrawal, localizing all molecular distortions to Stage
II. In the case of an atom abstraction, Stage I represents the
approach of the abstracting species, ending when the X-X bond
distance is equal to its value at the transition state, as indicated
in Figure 1. In Stage II, the abstracted species is transferred
from one atom to the other, passing through the transition state
geometry, while the X-X bond distance remains fixed. Finally,
Stage III represents withdrawal of product species.

For the purpose of this study, we have not made any
assumptions about the nature of the state interaction in the far-
field. However, it is presumed that at the Stage II boundaries,

coupling of the two states may be adequately described by the
prediction of nondegenerate two-state perturbation theory. The
resultant energy will provide us with a boundary condition for
our predicted adiabatic energy.

This basic linear crossing model provides the framework for
our coordinate system. The variableF is the reduced reaction
coordinate for Stage II, taking on a value of-1 for reactants
and +1 for products. In symmetric reactions such as those
considered here, the transition state necessarily occurs atF )
0. As such, the symmetry of the system allows for an extremely
simple expression for the crossing height.

where∆E is the energy difference between the diabatic states
at the Stage II boundaries.

Please note that while the Stage I and III energies are depicted
as constant in Figure 1, this is not necessarily the case.
Depending on which excited state is governing the reaction,
the far-field energies may evolve in a variety of ways, producing
different boundary conditions. We have shown in previous
papers15-17 that this feature of the model may be exploited to
better understand the mechanism for radical-molecule reactions
by examining the relationship between measured activation
barriers and predicted crossing heights. In the case of reactions
dominated by the singlet and triplet surface interaction, the far-
field splitting is simply determined by3/4 the singlet-triplet
gap.18 Since the two states are noninteracting at long range, this
splitting may be presumed roughly constant throughout regions
I and III. In the case of reactions dominated by the ionic surface,
the far-field splitting is simply IP-EA and evolves Coulomb-
ically until the region II boundary.

While the nature of the controlling excited state plays a critical
role in determining the value ofEx, it does not otherwise
influence the coupling. Hence in the treatment which follows
the crossing height may be presumed totally general, inde-
pendent of the specific electronic states involved. For the
purpose of this study, we shall consider only near-field control
of barrier height. Crossing height in this regime can be regarded
as a scaling factor which, as will be shown in subsequent
derivations, is immaterial to the magnitude of coupling. This
separability is a critical part of our model design.

Hyperbolic Approximation. In order to derive a mathemati-
cal formulation forâ it is necessary to strategically constrain
the shape of the potential energy surface in a manner that is
both scientifically reasonable and simple enough to avoid
obscuring the underlying physics involved. The constraint we
have selected is the explicit treatment of the adiabatic surface
as a hyperbola, the asymptotes of which are the diabatic energy
states, throughout the atom transfer region. The hyperbola is
the canonical solution for a two-state avoided crossing prob-
lem,19 and holds a distinct advantage over more common barrier
potentials such as Eckhart20 because it is completely constrained
by the initial conditions of the problem and thus does not rely
on variable parameters requiring adjustments from an empirical
fit to the data. The symmetry of the splitting is readily apparent
from the energy correction derived from second order, nonde-
generate perturbation theory for a two-level system.

The assumption that this correction is the dominant effect
permits us to apply hyperbolic functional behavior to the
resultant adiabatic states.

Figure 1. Basic three-stage linear curve-crossing model. Over the
course of the atom transfer, the statesψ1 (corresponding to the reactant
ground state) andψ2 (corresponding to the product ground state) invert
in energy. The X-X bond distance remains constant throughout the
transfer.
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In order to simplify later calculations, we shall define the
origin of our energy scale at the crossing point; the energy of
the transition state on the lower adiabatic surface is now given
by -REx, whereR is a parameter which is analogous but not
necessarily equivalent toâ. The slope of the asymptotes is
simply given by(Ex. We may then express our model adiabatic
energy as

Hyperbolae for a series ofR values are depicted in Figure 2.
Note that smaller values ofR correspond to weakly coupled
systems, for which the adiabatic state may be closely ap-
proximated by the diabatic state for a significant portion of the
reaction coordinate. For larger values ofR, the splitting is
significant, and the diabatic states may be regarded as strongly
mixed throughout Stage II.

Having approximated the Stage II PES as a hyperbola, we
may now express the near-field barrier height as the difference
between the modeled adiabatic energy at the transition state and
boundary. Thus

We may now relate the splitting parameter,R, to â via eq 1.
Solution forâ yields

Note that by definitionR is positive and real, which limitsâ
to values between zero and one. Obviously, the hyperbola is
not an appropriate model for describing reactions with negative
activation barriers, so this is precisely the range ofâ we are
looking for.

Now that we have established the fundamental premises of
this model, let us apply it to a generalized quantum mechanical
system.

Quantification of Two-State Coupling

In this section we shall derive a simple formula for calculating
the parameter,R. Once known,R may be combined with the

crossing height derived from the far-field properties in order to
predict the potential barrier resulting from the atom transfer
interaction. We have endeavored to maintain maximal generality
so that the formulation would be applicable to any symmetric
linear curve crossing, regardless of the nature of the excited
state.

In the simple methodology of this model, the adiabatic wave
function Ψ is expressed as a linear combination of diabatic
states,ψ1 andψ2. A constant coupling term is then introduced
into the Hamiltonian and the adiabatic energy calculated. The
coupling constant, which is needed in order to calculate
perturbative splitting, is determined by evaluating the explicit
adiabatic energy at the transition state and imposing the
hyperbolic value.

Problem Setup.Let us begin by expressing the unnormalized
ground state adiabatic wave function as a linear combination
of the individual diabatic states.

The parameterδ is the familiar mixing angle, and its value
is a direct reflection of the extent to which the chemical reaction
has occurred. In the context of the three-stage model, we can
presume thatδ has a value close to zero (pureψ1) at the Stage
I/Stage II boundary (F ) -1) and a value close toπ/2 (pure
ψ2) at the Stage II/Stage III boundary (F ) 1). Clearly,δ will
be exactly equal toπ/4 at the crossing point, thereby reducing
eq 7 to the appropriate ground state solution.

In the absence of coupling, eq 7 is fully normalized. How-
ever, the presumption of state mixing necessitates the non-
orthogonality of ψ1 and ψ2. Accounting for overlap, the
expression then becomes

whereS represents the state-to-state overlap between the two
diabatic wave functions.

We now consider the basic Hamiltonian for a two level
system, introducing an arbitrary coupling term,γ, into the off-
diagonal elements.

The difficulty in analyzing such a system is in evaluation of
γ. However, by applying the wave function described in eq 8
to the Hamiltonian above, we may expressγ in terms of more
concrete systemic variables, thereby removing it from the
problem. In the subsequent section we shall evaluate the explicit
adiabatic energy by combining eqs 8 and 9.

Calculation of the Adiabatic Energy. Evaluation of the
adiabatic energy by means of eqs 8 and 9 yields the following
expression:

As γ goes to zero, the system becomes weakly coupled and the
final term vanishes. The ground state adiabatic energy will then
remain uncoupled and follow the appropriate diabatic paths. For
finite γ andS, the final term becomes significant and we must
take further steps to evaluate its magnitude.

Figure 2. Hyperbolae for a series ofR values. At smallR the functional
surface deviates only slightly from the asymptotes. Splitting is enhanced
asR increases.

Ead
hyp ) -Ex(R

2 + F2)1/2 (4)
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â ) 1 + R - (1 + R2)1/2 (6)

Ψ ) cosδψ1 - sin δψ2 (7)

Ψ ) ( 1
1 - Ssin 2δ)1/2

(cosδψ1 - sin δψ2) (8)

Ĥ ) (H1 γ
γ H2

) (9)

Ead ) 1
1 - Ssin 2δ

(E1 cos2 δ + E2 cos2 δ -
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Fortunately, the geometric characteristics of the symmetric
case permit us to greatly simplify eq 10. Because we have
defined the energy coordinate such that the crossing occurs at
E ) 0 and assumed that the states evolve linearly, we can
express the diabatic energies with great facility:

Substituting eqs 11 into eq 10 and making use of the double
angle formula to condense the terms yields:

In order to evaluate the magnitude of coupling we must now
apply the hyperbolic approximation. In the context of this
approximation, the value of the adiabatic energy at the transition
state must be equal to-REx. We now evaluate eq 12 at the
transition state (F ) 0, δ ) π/4) to find the relationship between
γ andR.

whereSTS is the state-to-state overlap evaluated at the transition
state. We now have an explicit mathematical relation between
the arbitrarily defined coupling constant from the off-diagonal
Hamiltonian (γ) and the splitting parameter,R. Equation 13
represents the first critical advancement of the hyperbolic
approximation in that it permits us to consider the adiabatic
energy in the context of a more quantitatively intuitive coupling
term. While R remains an unknown, we may now at least
eliminateγ from our energy expression, reducing eq 12 to

Note that eq 14 applies only to the atom transfer region (Stage
II). Outside this region we must treat the reaction in a different
coordinate system andF is no longer a good variable. However,
as this treatment applies only to the near-field, the chosen
coordinate system remains valid throughout. Any far-field
impacts on the barrier height are encapsulated in the value of
Ex; once we have established the energetic and geometric
boundary conditions, any changes in barrier height predicted
by the model are due tonear-fieldeffects.

Characterizing the Barrier. In order to achieve our ultimate
goal of a solution forR, it is necessary to employ one more
energetic relation. We may accomplish this through the ap-
plications of basic two-state perturbation theory as described
in eq 3 to the derived expression forγ (eq 13). This relation
will then permit us to evaluate the splitting at the boundaries
as a function ofR. The resultant value may then be equated to
that of eq 14 at the boundary to yield a solution forR.

According to second-order nondegenerate perturbation theory,
splitting to the lower adiabatic surface atF ) (1 is given by

whereEsplitting is the difference between the diabatic and resultant
adiabatic energy at the boundary, andSBC is the diabatic state-
to-state overlap evaluated at the boundary. Eliminatingγ yields

We may now combine this fundamental perturbative splitting
value with the functional definition of the hyperbola given in
eq 4 to derive the following relation.

Solving forR (which, by definition, is positive and real) yields

Note that the solution selected for eq 16 is the appropriate
one for positive values ofSTS andSBC. While it is mathematically
viable for these quantities to be negative, theR which would
result from the appropriately chosen solution (i.e., forS< 0) is
identical to the value obtained by substituting the absolute value
of the state-to-state overlap into the formula above.

This basic solution permits us to predict a near-field barrier
height simply by calculating the magnitude of state-to-state
overlap at two points along the reaction coordinate. Most
significantly, eq 16 identifies state-to-state overlap as the critical
driving force in barrier evolution in the near-field and demon-
strates that both its absolute value and its functional form are
influential. Finally, eq 16 provides us with a quantitative
framework within which to consider variation over a series of
reactions with similar far-field properties.

Constructing the Diabatic States

As shown in the previous section, the principal quantity
driving the evolution of barrier heights in the near-field is the
state-to-state overlap. In order to obtain a value for the splitting,
it becomes necessary to quantify the state-to-state overlap by
characterizing the specific diabatic states involved. Critical to
this process is the recognition of the system components most
responsible for barrier formation; once these component orbitals
have been identified we may further simplify the calculation
by examining their energy evolution in isolation. While this
assumption of separability is inarguably an approximation, it is
certainly reasonable in the context of trend description.

In the near-field representation, transition from reactants to
products may be expressed by the transfer of a single electron.
As a result, we may separate overall reactant and product wave

E1 ) ExF

E2 ) -ExF (11)

Ead ) 1
1 - Ssin 2δ

(FEx cos 2δ - γSsin 2δ) (12)

Ead|TS ) - 1
1 - STS

(γSTS)

) -REx

γ ) REx( 1
STS

- 1) (13)
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)
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2Ex
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R2(SBC

STS
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2
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2 + 1)1/2 ) -Ex - Ex

R2(SBC
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- SBC)2
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functions into a common wave function,ψo, and a function
representing the singly occupied molecular orbital.

The functions ψ̃1 and ψ̃2 are molecular orbitals which
correspond to reactant ground state/product excited state and
product ground state/reactant excited state respectively, permit-
ting us to consider the reactive system in the context of the
frontier molecular orbital analysis, as pioneered by Fukui.3 If
we make the approximation that the near-field barrier is
principally attributable to the mixing ofψ̃1 and ψ̃2, we may
vastly simplify our calculation by looking only at the barrier
(and therefore the overlap) arising from these two orbitals.

We may now estimate the barrier height by constructingψ̃1

andψ̃2 in the context of basic molecular orbital theory and then
explicitly calculating the overlap between them:

By taking advantage of the symmetry characteristics of the
system and exploiting known properties of the isolated species,
one may constrain the relationships among the coefficients to
construct the appropriate diabatic orbitals. As such, the first step
in selecting the orbitals of interest is to examine the nature of
the individual two-atom interactions involved in bonding.

Consider a set of three atoms, A, B, and C, arranged linearly.
To maintain generality, let us assume that the bonding interac-
tions in each species involve a single orbital of unspecified
symmetry, designated byφa, φb, and φc respectively. For
simplicity, we shall take theφ functions to be pure atomic
orbitals. We now seek to use this three-orbital system to
construct a pair of states which possess the previously specified
properties ofψ̃1 andψ̃2. A properly constructed set of orbitals
will provide the ideal framework within which to consider atom
transfer reactions.

We shall construct these basis states by using a basic linear
combination of atomic orbitals (LCAO) technique. Disregarding
coefficient values for the moment and considering only phases,
there are four fundamental configurations available to the
system: all nearest interactions favorable (Figure 3a), a favor-
able interaction between A and B and a disfavorable interaction
between B and C (Figure 3b), a disfavorable interaction between
A and B and a favorable interaction between B and C (Figure
3c), and all nearest interactions disfavorable (Figure 3d)

Let us now consider evolution of orbital energetics along the
reaction coordinate in the context of an atom transfer reaction,
AB + C f A + BC. The relative energy of the orbitals evolve
over the atom transfer as indicated in Figure 4. In a three-orbital,
three-electron system, the lowest energy state (a) will be doubly
occupied throughout and thus is not affected by the occurrence
of the atom transfer. The wave function corresponding to this

orbital will be absorbed intoψo. Similarly, the highest energy
state (d) remains unoccupied and also does not participate. As
the final electron will preferentially occupy the available state
with lowest energy, the critical states involved in the electron
transfer are (b) and (c) which map onto the ground state of
reactants and products respectively and become degenerate
midway along the reaction coordinate. Clearly, orbitals (b) and
(c) have the precise properties we are looking for inψ̃1 andψ̃2.

Having established the qualitative form ofψ̃1 andψ̃2, let us
now approach their construction in a more quantitative sense.
One may express these molecular orbital functions as a linear
combination of the threetwo-orbital interaction wave functions
(ψAB, ψBC, andψAC). Thus

In contrast to previous methods21 which have utilized isolated
diatomic wave functions to construct composite triatomic states,
this approachrestricts the wave function to two-atom interac-
tions By neglecting the influence of the third atom on the
individual diatomic wave functions, eq 19 is able to account
for each contributing component without adiabatizing the overall
system

For a symmetric atom transfer, A and C are equivalent, and
the individual, unnormalized wave functions are given by

The coefficientsøHOMO and øLUMO arise from a simple
rearrangement of the molecular orbital coefficients of the
isolated diatomic. They are defined such that if the unnormalized
solutions for (AB or CB), accounting for conservation of states,
are given by

wheres(a,c)bis the interatomic overlap between orbitalsφA,C and
φB, the respectiveø terms are defined:

The magnitude of eachø therefore quantifies the relative
distribution of electron density in the isolated diatomic molecules
for both the bonding and antibonding configurations. The
molecular orbital coefficients may be easily estimated based
on the charge distribution implied by the molecular dipole
moment.

Figure 3. Four configurations (assuming arbitrary positive coefficients)
representing every permutation of a linearly arranged three orbital
interaction.

ψ1 ) ψoψ̃1

ψ2 ) ψoψ̃2 (17)

S) 〈ψ̃1|ψ̃2〉 (18)

ψ̃i ) ψi
AB + ψi

BC + ψi
AC (19)

ψ1
AB ) (φa + øHOMOφb)

ψ1
BC ) (øLUMOφb - φc)

ψ1
AC ) (φa - φC)

ψ2
AB ) (φa - øLUMOφb)

ψ2
BC ) -(øHOMOφb + φc)

ψ2
AC ) (φa - φc) (20)

ψHOMO ) ca,cφa,c + cbφb

ψLUMO ) (cb + s(a,c)bca,c)φa,c- (ca,c + s(a,c)bcb)φb (21)

øHOMO ) ( cb

ca,c
)

øLUMO ) ((ca,c + sabcb)

(cb + sabca,c)) (22)
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By means of eqs 20-22 and the symmetry requirement which
dictates that the coefficients ofφa and φc must be equal in
magnitude, the total, unnormalized molecular orbital wave
functions now become

where

Because of the anticorrelation betweenøHOMO andøLUMO, the
parameter¥ may be presumed a constant throughout the near-
field for a given chemical system. With the obvious exception
of homonuclear diatomics, ground and excited state electron
density will shift as the bond is lengthened away from
equilibrium, thereby altering bothø values. However, as electron
density in the HOMO shifts toward the more electronegative
atom, the electron density in the LUMO shifts away from it,
keeping the quantity¥ relatively constant. In fact, even HF, a
notoriously problematic and highly polar molecule, shows a
variation in ¥ of less than 5% as the bond is stretched from
equilibrium to its largest near-field value at the Stage II/Stage
III boundary. Clearly, for a homonuclear diatomicøHOMO and
øLUMO (and therefore¥) each reduce to 1.

Equations 23 represent the complete strategy for frontier
orbital construction in the symmetric case. Armed with these
formulae, we are now equipped to evaluate the state-to-state
overlap and thereby quantify the coupling.

State-to-State Overlap and Coupling.Now that we have
established a concrete methodology for construction of the
frontier molecular orbitals, we are equipped to think more
quantitatively about the evolution of the state-to-state overlap
over the reaction coordinate. Furthermore, we are in the position
to quantify how this important property evolves from system
to system.

First, however, we must explicitly calculate the state-to-state
overlap. Normalization of eqs 23 yields

where thesRâ are the off-diagonal elements of the interatomic
overlap matrix. The total state-to-state overlap is given by

Equation 26 implies thatS will change very little over the
atom transfer reaction coordinate, as both¥ andsac are constant;
The only terms which vary aresab andsbc, but even those effects
will be minute because the opposing signs of the terms in the
denominator counteract each other, producing only a small

variation inS. Figure 5 depicts the variation in total state-to-
state overlap withsab andsbc.

Because the two matrix elementssab andsbc are necessarily
anticorrelated in Stage II, chemical systems will tend to evolve
parallel to the contour lines depicted in Figure 5. As an example
of this behavior, the matrix elements of the H+ H2, H + FH,
and F+ HF systems (calculated in UHF/STO-3G) have been
included in the plot. The reactions clearly proceed along a path
of approximately constant state-to-state overlap, so it will vary
only slightly over the reaction coordinate in each case.

At the transition state,sab ) sbc and eq 26 reduces to

Because of the tendency of the state-to-state overlap to remain
roughly constant, we may take this simplified value to represent
the property throughout. Utilizing the approximation thatSBC

) STS, we may now reduce eq 16 to

Figure 4. Energy evolution of the four orbital configurations. The
lowest (a) and highest (d) energy orbitals maintain their relative
energetic locations throughout the atom transfer. Orbitals (b) and (c)
invert over the course of the transfer, becoming degenerate atrab )
rbc.

Figure 5. Variation of the total state-to-state overlap as a function of
sab andsbc. The black points represent the locations of the H+ H2, H
+ FH, and F+ HF systems, indicating that the anticorrelation between
sab andsbc results in very little variation in the total state-to-state overlap
over the course of the atom transfer. This result suggests that the model
may be further simplified by treating the state-to-state overlap as a
constant throughout Stage II, requiring its value to be calculated only
at the transition state.

STS )
(2 - ¥2 - 2sac)

(2 + ¥2 - 2sac)
(27)

R )
2(1 - (1 - STS)

2)1/2

(1 - STS)
2

(28)

ψ̃1 ) φa + ¥φb ( φc

ψ̃2 ) φa + ¥φb ( φc (23)

¥ ≡ (øHOMO + øLUMO

2 ) (24)

ψ̃1 ) N1(φa + ¥φb - φc)

ψ2 ) N2(φa - ¥φb - φc)

N1 ) ( 1
2 + ¥(¥ + (sab - sbc)) - 2sac

)1/2

N2 ) ( 1
2 + ¥(¥ - (sab - sbc)) - 2sac

)1/2
(25)

S) 〈ψ̃1|ψ̃2〉

) (2 - ¥2 - 2sac)(2 + ¥(¥ - (sab - sbc)) -

2sac)
-1/2(2 + ¥(¥ + (sab - sbc)) - 2sac)

-1/2 (26)
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As expected, the coupling vanishes in the case of orthogonal
diabatic states (STS ) 0) and blows up when the states become
identical (STS ) 1). This final formulation provides a fast and
simple method for estimating the coupling and, in combination
with eq 27, allows for a quantitative analysis of trends by
reducing the problem to two easily determinable parameters:
¥ andsac.

Discussion

Barrier heights in atom transfer reactions are determined by
a combination of far-field and near-field effects. In previous
papers15-17 we have shown how far-field properties may be used
to determine the appropriate boundary conditions for treatment
of electron transfer in the context of a two-state curve crossing.
Analysis of far-field influences on the crossing height has proven
to be a useful way of isolating the dominant excited state and
thereby explaining the mechanistic motivation for reactivity
trends. The purpose of this work has been to develop an
analogous model for understanding near-field-driven variation
in barrier heights.

In order to model near-field barrier height formation we have
chosen to approximate the adiabatic barrier as a hyperbola,
produced by means of perturbative splitting from linear diabatic
states. By matching the explicit adiabatic energy (eq 14) to the
functional form of a hyperbola (eq 4), we have derived a general
relation (eq 28) between the splitting parameter,R, and the value
of the diabatic state-to-state overlap at the transition state.
Quantization of this elusive coupling term in terms of concrete
quantum-chemical properties has been one of the historical
barricades to understanding of near-field barrier control.

While eq 28 represents a significant step toward understand-
ing the physics which underlie curve-crossing reactions, state-
to-state overlap is a less than optimal variable with which to
fully understand barrier evolution. In order to consider chemical
systems within the context of more intuitive physical properties,
we have developed a method of diabatic state construction which
permits explicit calculation of the state-to-state overlap via eq
27, demonstrating that it is wholly determined by the far-atom
orbital overlap term and the parameter,¥, a quantity which
reflects the distribution of electron density in the isolated
molecular species. Both the interatomic overlap and¥ are easily
calculable and do not rely on high-level electronic structure
calculations, providing a convenient method for estimation of
coupling.

With all of the aforementioned assumptions in place, a rough
adiabatic barrier estimate may be calculated by combining eqs
1, 6, 28, and 27 (reproduced below).

At this level of treatment, a highly accurate barrier height
prediction cannot be expected. However, as a mathematical way
to explain reactivity trends, this zeroth order model provides a
solid foundation.

Application to a Few Chemical Systems.As a first test of
the model’s ability to reproduce reactivity trends, we have
applied eqs 29 to a few symmetric triatomic systems. Unfor-
tunately, very few experimental data are available for the
systems of interest, making evaluation of the model’s overall
barrier height prediction capacity difficult. However, in lieu of
experimental numbers, we have chosen to compare our predic-
tions to ab initio results. While not ideal, this comparison should
at least provide a general sense of the model’s applicability to
trend prediction.

Table 1 lists the nondimensional coupling parameter,â, for
a series of reactions as calculated by ab initio (UMP2/6-31G**)
and eqs 29. It is significant to note that while the presented
results were calculated with the simplest formulation of this
model, numbers produced by the more detailed method (eqs
16 and 26) differed by less than 1% in every case. This result
is highly encouraging and reconfirms that the approximation
of constant state-to-state overlap throughout Stage II is an
acceptable one.

Because this basic model makes the assumption of system
linearity, the transition states from which we derived the
numbers in Table 1 were constrained to their linear forms.
Although the “true” transition states of many of the reactions
depicted are, in actuality, nonlinear, this fact is immaterial to
the validity of the coupling calculation. The effective linear
transition states were determined by locating the first-order
saddle points in the restricted linear configuration. The effective
â parameter was then determined based on the splitting at the
boundary and transition state.

A plot of the data from Table 1 is depicted in Figure 6. The
plot shows good agreement with ab initio results, both numeri-
cally and in the context of trend prediction.

One very interesting element of the data presented above is
the set of results for the H atom transfers. Both methods predict

Eb ) Ex(1 - â)

â ) 1 + R - (1 + R2)1/2

R )
2(1 - (1 - Sts)

2)1/2

(1 - Sts)
2

Sts )
(2 - ¥2 - 2sac)

(2 + ¥2 - 2sac)
(29)

Figure 6. A comparison of theâ terms calculated by ab initio theory
and those predicted by the model presented in this work.

TABLE 1: Coupling Terms for a Series of Linear,
Symmetric Triatomic Reactions As Calculated by ab Initio
Methods (UMP2/6-31G**) and the Model Presented in This
Work

reaction â (ab initio) â (this work)

H + H2 0.83 0.84
F + HF 0.85 0.86
Cl + HCl 0.83 0.87
H + ClH 0.78 0.81
H + FH 0.68 0.72
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only a small variation inâ, supporting the assumption of Donaue
et al.15 that â will remain roughly constant over a series of
reactions and hence that H abstraction reactions are driven
principally by variations in far-field properties. While this model
does an excellent job quantitatively, reproducing the predictions
of electronic structure calculations to within 5%, it is important
to reiterate that it does not seek to reproduce the accuracy of
ab initio techniques. Our aim was to favor simplicity over
numerical accuracy, and while the approximations we have made
will naturally introduce some degree of error they should not
inhibit its intended purpose of trend prediction. Only comparison
against experiments can establish the true accuracy and ap-
plicability of this model, but the results of this first test are
quite promising, and we feel that this method could ultimately
be a powerful tool in further understanding the physical
phenomena that drive reactivity.

Derivative Approach to Reactivity. As encouraging as the
results presented above are with respect to the applicability of
this model, it is vital to remain cognizant of the fact that not all
barrier variations are driven by the near-field. To get a full
picture of the physics which underly a given series of reactions
we must takeboth far-field and near-field effects into account.
The derivative approach to reactivity, first introduced in Clarke
et al.,17 has been developed for just such a purpose. Because of
its value as a means for reactivity analysis we would like to
briefly review the basic strategy of the derivative approach and
expound upon how it may be used to garner information about
the near-field, as well as differentiate between near and far-
field influences on the barrier.

The formulation for the adiabatic barrier height presented in
eq 1 is particularly useful for distinguishing among regimes of
influence becauseEx and â are wholly separable, depending
on completely independent system properties. Such a feature
becomes significant in the derivative approach to chemical
reactivity, in which the total derivative in barrier height over a
series of reactions may be expanded into a series of partial
derivatives with respect to various properties,úi.

By analyzing the relative magnitude of each term in eq 30 it
becomes possible to isolate the most prominent contributing
factors to barrier height differences, providing valuable insight
into the reaction mechanism.

Taking the partial derivative of eq 1 with respect to an
arbitrary propertyê yields

However, the separability ofâ andEx implies that for a given
ê one of the terms on the rhs of eq 31 will be zero. Ifê is a
feature of the near-field, it will have no effect on the crossing
height and the first term of eq 31 will vanish. Similarly, ifê is
a far-field property it cannot affect the splitting and the second
term will vanish. As a result, eq 30 may be expressed as

Hereúi are the set of far-field properties andêi are the set of
near-field properties. This separation permits trends in barrier
heights to be identified specifically with the regime which

generates them. For variations attributable principally to near-
field effects (either explicit diabatic state overlap or the
parameters which influence it), the first term in eq 32 will be
small relative to the second. Similarly, if the variation is driven
by far-field effects (energy gap, reaction enthalpy) the first term
will be significantly larger. Analysis of a manifold of reactions
will permit us to better distinguish between the types of chemical
interactions that are governed by the far-field and those which
are controlled by the near-field.

Conclusions

An approximate expression (eq 28) has been derived to
estimate the magnitude of the splitting in a symmetric linear
curve crossing. This expression involves only the state-to-state
overlap evaluated at the transition state and thus is not only
calculable, but because it does not rely on a wide array of closely
correlated parameters its predictions are testable against ex-
perimental measurements.

In order to put eq 28 to use we have proposed a method for
diabatic state construction out of the three principal atomic
orbitals involved in the bonding interactions. Coefficients in
the diabatic wave functions are determined based on coefficient
ratios of the diabatic/adiabatic states in the far-field. The
parameter,¥, reflects how the molecular ground and excited
states tend to distribute their electron density and has a strong
influence on the state-to-state overlap in the near-field.

Initial comparison of this method of coupling strength
calculation against ab initio results are very encouraging,
confirming that this method can indeed adequately predict
reactive trends. While comparison against experimental results
should provide the ultimate demonstration of our model’s
accuracy, results of this first test are highly encouraging.

By breaking the curve-crossing problem down into two
independent effects, crossing height and coupling, it becomes
possible to separately analyze the respective impact of each
regime on reactivity trends. In this way, one may determine
whether a difference in barrier heights is principally due to
excited state effects or a radical difference between the reactant
and product wave functions. Furthermore, because the coupling
is independent of crossing height, the latter property alone may
be used to determine which of multiple excited states (i.e.,
singlet-triplet, ionic, etc.) is most crucial in governing reactivity
in a given chemical system, thereby lending insight into the
mechanism for that particular series of reactions.

With trend description as its ultimate goal, this model permits
facile estimation of near-field interaction energy, providing a
simple tool for gleaning fundamental mechanistic information
with a minimum of computational expense.

Acknowledgment. The authors would like to gratefully
acknowledge the NSF (Grant 9977992) for their kind support.

References and Notes

(1) London, F.Z. Phys.1928, 46, 455.
(2) Fukui, K.; Fujimoto, H.Bull. Chem. Soc. Jpn.1968, 41, 1989.
(3) Fukui, K.; Fujimoto, H.Bull. Chem. Soc. Jpn.1969, 42, 3399.
(4) Fujimoto, H.; Yamabe, S.; Fukui, K.Bull. Chem. Soc. Jpn.1971,

44, 2936.
(5) Child, M. Mol. Phys. 1971, 20, 171.
(6) Broeckhove, J.; Claessens, M.; Lathouwers, L.; Deumens, E.; Ohrn,

Y.; Van Leuven, P.J. Chem. Phys. 1990, 93, 8945.
(7) Silver, D.J. Am. Chem. Soc. 1974, 96, 5959.
(8) Shaik, S.S.; Reddy, A. C.Trans. Faraday Soc. 1994, 90, 1631.
(9) Shaik, E.; S. Duzy, S.; Bartuv, A.J. Phys. Chem. 1990, 9, 6574.

(10) Shaik, S.S.; Hiberty, P. C.AdV. Quantum Chem. 1995, 26, 99.
(11) Pross, A.; Shaik, S.S.Acc. Chem. Res. 1983, 16, 363.

dEb

drxn
) ∑

i

∂Eb

∂êi

∂êi

∂rxn
(30)

∂Eb

∂ê
) (1 - â)

∂Ex

∂ê
- Ex

∂â
∂ê

(31)

dEb

drxn
) (1 - â)∑

i

∂Ex

∂úi

∂úi

∂rxn
- Ex ∑

i

∂â

∂êi

∂êi

∂rxn
(32)

Barrier Evolution in Symmetric Atom Transfer Reactions J. Phys. Chem. A, Vol. 105, No. 9, 20011505



(12) Pross, A.AdV. Phys. Org. Chem. 1985, 21, 99.
(13) Pross, A.; Yamataka, H.; Nagase, S.J. Phys. Org. Chem.1991, 4,

135.
(14) Yasumori, I.Bull. Chem. Soc. Jpn.1959, 32, 1103.
(15) Donahue, N. M.; Clarke, J. S.; Anderson, J. G.J. Phys. Chem.

1998, 10, 3923.
(16) Clarke, J. S.; Kroll, J. H.; Donahue, N. M.; Anderson, J. G.J. Phys.

Chem. 1998, 102, 9847.

(17) Clarke, J. S.; Rypkema, H. A.; Kroll, J. H.; Donahue, N. M.;
Anderson, J. G.J. Phys. Chem. 2000, 104, 4458.

(18) Shaik, S. S.; Hiberty, P. C.; Lefour, J.-M.; Ohanessian, G.J. Am.
Chem. Soc. 1987, 109, 363.

(19) Cohen-Tannoudji, C.; Diu, B.; Laloe, F.Quantum Mechanics; John
Wiley and Sons: New York, 1977.

(20) Johnston, H. S.; Heicklen, J.J. Phys. Chem. 1966, 66, 532.
(21) Yasumori, I.Bull. Chem. Soc. Jpn.1959, 32, 1110.

1506 J. Phys. Chem. A, Vol. 105, No. 9, 2001 Rypkema et al.


